Recuento de
datos: Frecuencias
Para manejar los resultados
de una encuesta, de una votación o de cualquier estudio estadístico, lo primero
que hemos de hacer es organizar los resultados obtenidos, ordenándolos y
clasificándolos, es decir, haciendo lo que se llama un recuento de los datos.
Luego se
elaborará un cuadro llamado “tabla de
frecuencias” donde se señala para cada resultado la frecuencia absoluta y la
frecuencia relativa.
Estas tablas son una forma
sencilla de presentar los datos y hacen más fácil interpretar los resultados.
FRECUENCIA
ABSOLUTA
Se llama frecuencia absoluta
de un dato al número de veces que ha salido ese dato o resultado.
La suma de las frecuencias
absolutas de todos los datos que se han obtenido en la encuesta o estudio, ha
de ser igual al número total de datos.
FRECUENCIA
RELATIVA
Se llama frecuencia relativa
de un dato al cociente entre su frecuencia absoluta y el número total de datos.
La suma de todas las frecuencias
relativas de los datos de un estudio tiene que ser igual a 1.
La media, la mediana y la moda
El conjunto de datos que obtenemos
al hacer cualquier encuesta o votación, podemos representarlo gráficamente,
mediante un diagrama de barras o un gráfico de sectores, o bien mediante tres
valores que llamamos media, mediana y moda.
LA MEDIA
Para hallar la media de un
conjunto de datos, dividimos la suma de todos ellos entre el número de datos
que hay. Para poder calcular la media, los datos han de ser
valores numéricos. No podemos, por ejemplo, hallar la media en un estudio que
hemos hecho sobre el color de pelo de los alumnos de clase, pues moreno,
rubio... son cualidades, no números.
LA MEDIANA
La mediana de un conjunto
de datos ordenados es el valor que ocupa la posición central de ellos. Si el
número de datos es impar, la mediana es el valor que ocupa la posición
central. Si el número de datos es par, la mediana es igual a la
media de los dos datos centrales.
|
LA MODA
Llamamos moda de un conjunto
de datos al valor que más se repite; o dicho de otra forma, el que tiene la
mayor frecuencia absoluta de entre ellos.
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.